Hot Formability Study of Cr5 Alloy Steel by Integration of FEM and 3D Processing Maps

Materials (Basel). 2022 Jul 9;15(14):4801. doi: 10.3390/ma15144801.

Abstract

Microstructure is an important factor that affects the mechanical properties and service life of forgings. Through the full study of the formability of the material, the internal microstructure of the material can be effectively controlled. In order to accurately describe the formability of materials during thermal processing, 3D hot processing maps containing strains were established in this paper, and the 3D hot processing maps were coupled with the finite element method for simulation calculation. The Cr5 alloy steel was subjected to unidirectional thermal compression at a strain rate of 0.005-5 s-1 and temperature range of 900-1200 °C on a Gleeble-1500D thermal simulation machine, in order to obtain the date of true stress and strain. Based on the dynamic material model (DMM), the 3D processing maps of Cr5 alloy steel was established, and the 3D processing maps were associated with the analysis of microstructure evolution during hot deformation. The results show that the optimum thermal deformation conditions are as follows: temperature of 1000-1125 °C, strain rate of 0.01-0.2 s-1, and peak power dissipation of 0.41. The 3D processing maps were coupled with the finite element software FORGE® to simulate the hot working process, and the distribution and change of power dissipation and flow instability domain on the metal deformation under different thermal deformation conditions were obtained. The comparison between the simulation results and metallographic images of typical regions of metal deformation shows that they are in good agreement. This method can effectively predict and analyze the formability of materials during hot processing and provide guidance for practical industrial production.

Keywords: Cr5 alloy steel; finite element method (FEM); microstructure evolution; three-dimensional (3D) processing maps.