Background: Colonoscopy is a mainstay to detect premalignant neoplastic lesions in the colon. Real-time Artificial Intelligence (AI)-aided colonoscopy purportedly improves the polyp detection rate, especially for small flat lesions. The aim of this study is to evaluate the performance of real-time AI-aided colonoscopy in the detection of colonic polyps.
Methods: A prospective single institution cohort study was conducted in Singapore. All real-time AI-aided colonoscopies, regardless of indication, performed by specialist-grade endoscopists were anonymously recorded from July to September 2021 and reviewed by 2 independent authors (FHK, JL). Sustained detection of an area by the program was regarded as a "hit". Histology for the polypectomies were reviewed to determine adenoma detection rate (ADR). Individual endoscopist's performance with AI were compared against their baseline performance without AI endoscopy.
Results: A total of 24 (82.8%) endoscopists participated with 18 (62.1%) performing ≥ 5 AI-aided colonoscopies. Of the 18, 72.2% (n = 13) were general surgeons. During that 3-months period, 487 "hits" encountered in 298 colonoscopies. Polypectomies were performed for 51.3% and 68.4% of these polypectomies were adenomas on histology. The post-intervention median ADR was 30.4% was higher than the median baseline polypectomy rate of 24.3% (p = 0.02). Of the adenomas excised, 14 (5.6%) were sessile serrated adenomas. Of those who performed ≥ 5 AI-aided colonoscopies, 13 (72.2%) had an improvement of ADR compared to their polypectomy rate before the introduction of AI, of which 2 of them had significant improvement.
Conclusions: Real-time AI-aided colonoscopy have the potential to improved ADR even for experienced endoscopists and would therefore, improve the quality of colonoscopy.
Keywords: Adenoma detection; Artificial intelligence; Colonoscopy; Endoscopy; Polyp detection.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.