This study aimed to identify secreted protein biomarkers in serum from the label-free LC/MS proteomics of neutrophils in pulmonary tuberculosis (TB) patients for the diagnosis biomarkers of TB label-free LC/MS. The proteomic profiles of neutrophils from 15 active TB patients and 15 healthy controls (HCs) were analyzed using label-free LC/MS. We identified 358 differentially expressed proteins preliminarily, including 279 up-regulated proteins and 79 down-regulated proteins. Thirty-eight differentially expressed secreted proteins involved in the progress of platelet degranulation between TB patients and HCs were focused. Of these, serotransferrin (TRF), alpha-2-macroglobulin (AMG), alpha-1-antitrypsin (AAT), alpha-1-acid glycoprotein 1 (AAG), alpha-1-acid glycoprotein 2 (AGP2), and alpha-1B-glycoprotein (A1BG) were selected for further verification in the serum of additional 134 TB patients and 138 HCs by nephelometry and ELISA in the training set. Statistically significant differences of TRF (P < 0.0001), AAT (P < 0.0001), AAG (P < 0.0001), AGP2 (P < 0.0001), and A1BG (P = 0.0003) were observed. The serum concentration of TRF was down-regulated in TB patients compared with healthy controls, which was coincident with the proteomics results. An additional validation of TRF was performed in an independent cohort of patients with active TB (n = 46), patients with lung cancer (n = 37), 20 HCs, and patients with pneumonia (n = 35) in the test set by nephelometry. The serum expression levels of TRF in the TB patients showed lower levels compared with those in patients with pneumonia (P = 0.0125), lung cancer (P = 0.0005), HCs (P < 0.0001), and the non-TB controls (P < 0.0001). Furthermore, the AUC value of TRF was 0.647 with 90.22% sensitivity and 42.86% specificity in discriminating the TB group from the pneumonia group, 0.702 with 93.48% sensitivity and 47.16% specificity in discriminating the TB group from the lung cancer group, 0.894 with 91.30% sensitivity and 71.62% specificity in discriminating the TB group from all HCs, and 0.792 with 91.30% sensitivity and 58.90% specificity in discriminating the TB group from the non-TB controls. This study obtained the proteomic profiles of neutrophils in the TB patients and HCs, which contribute to a better understanding of the pathogenesis molecules existing in the neutrophils of pulmonary tuberculosis and provide candidate biomarkers for the diagnosis of pulmonary tuberculosis.
© 2022 The Authors. Published by American Chemical Society.