Objective: Combination therapy has become the hallmark of lung cancer treatment, as it reduces the dosage intensity of individual drugs while increasing their efficacy. In the current study, we analyzed the combinatorial effect of decitabine and aspirin on non-small cell lung cancer (NSCLC) cell growth.
Methods: In this study, we investigated the combinatorial effect of decitabine and aspirin by MTT, colony formation, and Transwell assays. We also explored the underlying molecular mechanism via a series of in vitro and in vivo experiments.
Results: The combination of decitabine and aspirin regulated cell viability and migration in vitro. Moreover, the combination therapy suppressed tumor cell growth by inhibiting the β-catenin/STAT3 signaling pathway. Our study also found that the regimen increased the phosphorylation of β-catenin and decreased the expression of STAT3 and β-catenin.
Conclusion: The combined administration of decitabine and aspirin significantly reduced tumor growth compared with single-agent treatment and the control in vivo. The study results indicated that decitabine and aspirin could suppress NSCLC cell growth and metastasis via the β-catenin/STAT3 signaling pathway.
Keywords: Decitabine; STAT3; aspirin; cell proliferation; metastasis; non-small cell lung cancer; β-catenin.