Local neurodynamics as a signature of cortical areas: new insights from sleep

Cereb Cortex. 2023 Mar 10;33(6):3284-3292. doi: 10.1093/cercor/bhac274.

Abstract

Sleep crucial for the animal survival is accompanied by huge changes in neuronal electrical activity over time, the neurodynamics. Here, drawing on intracranial stereo-electroencephalographic (sEEG) recordings from the Montreal Neurological Institute (MNI), we analyzed local neurodynamics in the waking state at rest and during the N2, N3, and rapid eye movement (REM) sleep phases. Higuchi fractal dimension (HFD)-a measure of signal complexity-was studied as a feature of the local neurodynamics of the primary motor (M1), somatosensory (S1), and auditory (A1) cortices. The key working hypothesis, that the relationships between local neurodynamics preserve in all sleep phases despite the neurodynamics complexity reduces in sleep compared with wakefulness, was supported by the results. In fact, while HFD awake > REM > N2 > N3 (P < 0.001 consistently), HFD in M1 > S1 > A1 in awake and all sleep stages (P < 0.05 consistently). Also power spectral density was studied for consistency with previous investigations. Meaningfully, we found a local specificity of neurodynamics, well quantified by the fractal dimension, expressed in wakefulness and during sleep. We reinforce the idea that neurodynamic may become a new criterion for cortical parcellation, prospectively improving the understanding and ability of compensatory interventions for behavioral disorders.

Keywords: complexity; cortical parcels; fractal dimension; neurodynamics; sleep.

MeSH terms

  • Animals
  • Electroencephalography* / methods
  • Sleep Stages / physiology
  • Sleep* / physiology
  • Sleep, REM / physiology
  • Wakefulness / physiology