The tracheal system comprises one of the major adaptations of insects towards a terrestrial lifestyle. Many aspects such as the modifications towards wing reduction or a life in an arid climate are still poorly understood. To address these issues, we performed the first three-dimensional morphometric analyses of the tracheal system of a wingless insect, the desert beetle Gonopus tibialis and compared it with a flying beetle (Tenebrio molitor). Our results clearly show that the reduction of the flight apparatus has severe consequences for the tracheal system. This includes the reduction of the tracheal density, the relative volume of the trachea, the volume of the respective spiracles and the complete loss of individual tracheae. At the same time, the reduction of wings in the desert beetle allows modifications of the tracheal system that would be impossible in an animal with a functional flight apparatus such as the formation of a subelytral cavity as a part of the tracheal system, the strong elongation of the digestive tract including its tracheal system or the respiration through a single spiracle. Finally, we addressed when these modifications of the tracheal system take place during the development of the studied beetles. We can clearly show that they develop during pupation while the larvae of both species are almost identical in their tracheal system and body shape.
Keywords: Desert beetles; Morphometrics; Respiration; Tracheal system; Wing reduction.
©2022 Raś et al.