[3 H]NAAG, N-acetyl-l-aspartyl-l-glutamic acid, has been widely used as a substrate in glutamate carboxypeptidase II (GCPII) reactions, either to determine the inhibitory constants at 50% inhibition (IC50 ) of novel compounds or to measure GCPII activities in different tissues harvested from various disease models. The importance of [3 H]NAAG, combined with its current commercial unavailability, prompted the development of a reliable eight-step synthetic procedure towards [3 H2 ]NAAG starting from commercially available pyroglutamate. Pure [3 H]NAAG of high molar activity (49.8 Ci/mmol) and desired stereochemistry was isolated in high radiochemical yield (67 mCi) and radiochemical purity (>99%). The identity was confirmed by mass spectrometry and co-injection with unlabeled reference.
Keywords: [2H]Glu; [3H]Glu; [3H]NAAG; labeled amino acid; microscale synthesis; tritium labeling.
© 2022 John Wiley & Sons Ltd.