Chronic low-grade elevations of blood-borne cytokines/chemokines in older age tend to associate with frailty in humans. This persistent inflammation is often called "inflammageing" and likely contributes to frailty progression. Preclinical models such as ageing and/or genetically modified mice offer a unique opportunity to mechanistically study how these inflammatory mediators affect frailty. In this review, we summarize and contrast evidence relating cytokines/chemokines to frailty in humans and in mouse models of frailty. In humans and mice, higher levels of the pro-inflammatory cytokine interleukin-6 regularly increased in proportion to the degree of frailty. Evidence linking other cytokines/chemokines to frailty in humans and mice is less certain. The chemokines CXCL-10 and monocyte chemoattractant protein-1 related to frailty across both species, but evidence is limited and inconsistent. Several other cytokines/chemokines, including tumour necrosis factor-α relate to frailty in humans or in mice, but evidence to date is species- and tissue-dependent. It is important for future studies to validate common mechanistic inflammatory biomarkers of frailty between humans and mice. Achieving this goal will accelerate the search for drugs to treat frailty.
Keywords: Ageing; Animal model; Inflammageing; Inflammation.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.