Nanoparticles (NPs) designed for biomedical applications are coated with protein-repellent polymers. Here, we examine the penetration of rodlike NPs with narrow size distributions (Ln = 170 nm, wn = 12 nm) into multicellular tumor spheroids prepared from two human cancer cell lines. Two types of NPs with different core materials [polyferrocenylsilane and cellulose nanocrystals (CNC)] were coated with a dense brush of poly(oligoethyleneglycol methacrylate) (POEGMA), while a second CNC NP sample was coated with a linear polyethylene glycol (PEG) brush. While the core material had little influence, the coating material was strikingly important, with POEGMA-coated NPs penetrating much more deeply into the tumor spheroids than the NPs coated with linear PEG. Localization experiments using 111In-labeled POEGMA-coated CNC NPs showed that most of the radioactivity remained in the interstitial space (ca. 78%) with little cell uptake (ca. 6%). Hence, the deep penetration of these nanorods into tumor spheroids is associated with an interstitial diffusion pathway through the extracellular matrix and not cellular transcytosis.