Circular RNAs (circRNAs), a class of non-coding RNAs, play an essential role in embryo development and carcinogenesis, circNRIP1 was recently identified to promote development of multiple human cancers. This study investigated the role of circNRIP1 in osteosarcoma (OS) cells and the potential mechanisms relating to the sponging miRNAs and their target genes. OS cell lines and normal human osteoblasts were grown for qRT-PCR analysis of circNRIP1 expression and functions of circNRIP1 expression in OS cell proliferation, migration, and invasion in vitro. Bioinformatics analysis was then performed to predict the sponge miRNA of circNRIP1 and the target gene, which was confirmed by using the dual-luciferase reporter assay. The in vivo functions of circNRIP1 was evaluated in OS cell xenograft models, while levels of relevant marker genes were examined using immunohistochemistry. CircNRIP1 was mainly localized in OS cell cytoplasm and significantly lower in OS cell lines than in normal human osteoblasts. CircNRIP1 overexpression significantly inhibited OS cell proliferation, migration, and invasion in vitro. miR-1200 was predicted as the sponge miRNA of circNRIP1 and directly interacted with circNRIP1 confirmed by the dual-luciferase reporter assay. Moreover, miR-1200 overexpression significantly alleviated the inhibitory effect of circNRIP1 on OS cells. A protein-coding gene MIA2 was identified as the miR-1200 targeting gene and reversely associated with miR-1200 expression in OS cells. Increase in MIA2 expression in a murine OS cell xenograft model was associated with circNRIP1 expression in inhibition of OS cell xenograft growth in vivo. These data support the circNRIP1 OS-suppressive role by sponge of miR-1200 expression and in turn to upregulate MIA2 expression.
Keywords: Circular RNA; MIA2; circNRIP1; miR-1200; osteosarcoma.
AJCR Copyright © 2022.