The causes of decreasing plant species richness include abandonment of traditional management and the spread of invasive species, even in alpine habitats. Studies on the restoration and management of alpine habitats are predominantly focused on vascular plants, although an important part of alpine vegetation and its diversity is formed by bryophytes. We used bryophytes to indicate changes that occur after the clearcutting of nonindigenous dwarf pine (Pinus mugo Turra) and attempted to reveal the community to which the development of bryophyte species structure was directed. We compared species richness and composition between surveys to test for changes in spatial heterogeneity bryophyte communities. We also tried to reveal the main ecological drivers of the restoration process. The study was performed in the (sub)alpine area of the Eastern High Sudetes Mts. (the Czech Republic). We estimated bryophyte species cover and compared the composition of the bryophyte community in autochthonous grassland areas, areas under the dwarf pine canopy, and clearcut areas to reveal the pattern of shifts 9 years after the treatment. We also measured soil characteristics to reveal the environmental habitat conditions. Evidence of taxonomic homogenization of habitat after dwarf pine removal was found. Light conditions and attributes of litter were the driving factors of successional changes in the bryophyte communities, which led to taxonomic homogenization. This finding explains the slow restoration process due to dwarf pine legacy on the clearcut area. The succession trends were also shaped by unobserved factors, such as climate change and environmental eutrophication. We highly recommended active management and long-term monitoring.
Keywords: Clearcut; Dwarf pine; Environmental characteristics; Liverwort; Management; Successional trend.
Copyright © 2022 Elsevier Ltd. All rights reserved.