Objective: Exploration of biomarkers to predict the severity of COVID-19 is important to reduce mortality. Upon COVID-19 infection, neutrophil extracellular traps (NET) are formed, which leads to a cytokine storm and host damage. Hence, the extent of NET formation may reflect disease progression and predict mortality in COVID-19.
Methods: We measured 4 NET parameters - cell-free double stranded DNA (cell-free dsDNA), neutrophil elastase, citrullinated histone H3 (Cit-H3), and histone - DNA complex - in 188 COVID-19 patients and 20 healthy controls. Survivors (n=166) were hospitalized with or without oxygen supplementation, while non-survivors (n=22) expired during in-hospital treatment.
Results: Cell-free dsDNA was significantly elevated in non-survivors in comparison with survivors and controls. The survival rate of patients with high levels of cell-free dsDNA, neutrophil elastase, and Cit-H3 was significantly lower than that of patients with low levels. These three markers significantly correlated with inflammatory markers (absolute neutrophil count and C-reactive protein).
Conclusion: Since the increase in NET parameters indicates the unfavourable course of COVID-19 infection, patients predisposed to poor outcome can be rapidly managed through risk stratification by using these NET parameters.
Keywords: Cell-free DNA; Citrullinated histone H3; Histone-DNA complex; Neutrophil elastase; Neutrophil extracellular trap.
© 2022 by the Association of Clinical Scientists, Inc.