Correct Descemet Membrane Endothelial Keratoplasty (DMEK) graft orientation is imperative for success of DMEK surgery, but intraoperative evaluation can be challenging. We present a method for automatic evaluation of the graft orientation in intraoperative optical coherence tomography (iOCT), exploiting the natural rolling behavior of the graft. The method encompasses a deep learning model for graft segmentation, post-processing to obtain a smooth line representation, and curvature calculations to determine graft orientation. For an independent test set of 100 iOCT-frames, the automatic method correctly identified graft orientation in 78 frames and obtained an area under the receiver operating characteristic curve (AUC) of 0.84. When we replaced the automatic segmentation with the manual masks, the AUC increased to 0.92, corresponding to an accuracy of 86%. In comparison, two corneal specialists correctly identified graft orientation in 90% and 91% of the iOCT-frames.
© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.