In this study, we update the evaluation of the Russian GPT3 model presented in our previous paper in predicting the length of stay (LOS) in neurosurgery. We aimed to assess the performance the Russian GPT-3 (ruGPT-3) language model in LOS prediction using narrative medical records in neurosurgery compared to doctors' and patients' expectations. Doctors appeared to have the most realistic LOS expectations (MAE = 2.54), while the model's predictions (MAE = 3.53) were closest to the patients' (MAE = 3.47) but inferior to them (p = 0.011). A detailed analysis showed a solid quality of ruGPT-3 performance based on narrative clinical texts. Considering our previous findings obtained with recurrent neural networks and FastText vector representation, we estimate the new result as important but probably improveable.
Keywords: Length of stay; deep learning; natural language processing; neural networks; neurosurgery; prediction.