A GPCR-based yeast biosensor for biomedical, biotechnological, and point-of-use cannabinoid determination

Nat Commun. 2022 Jun 27;13(1):3664. doi: 10.1038/s41467-022-31357-6.

Abstract

Eukaryotic cells use G-protein coupled receptors to sense diverse signals, ranging from chemical compounds to light. Here, we exploit the remarkable sensing capacity of G-protein coupled receptors to construct yeast-based biosensors for real-life applications. To establish proof-of-concept, we focus on cannabinoids because of their neuromodulatory and immunomodulatory activities. We construct a CB2 receptor-based biosensor, optimize it to achieve high sensitivity and dynamic range, and prove its effectiveness in three applications of increasing difficulty. First, we screen a compound library to discover agonists and antagonists. Second, we analyze 54 plants to discover a new phytocannabinoid, dugesialactone. Finally, we develop a robust portable device, analyze body-fluid samples, and confidently detect designer drugs like JWH-018. These examples demonstrate the potential of yeast-based biosensors to enable diverse applications that can be implemented by non-specialists. Taking advantage of the extensive sensing repertoire of G-protein coupled receptors, this technology can be extended to detect numerous compounds.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques*
  • Biotechnology
  • Cannabinoid Receptor Agonists
  • Cannabinoids*
  • Gene Library
  • Saccharomyces cerevisiae

Substances

  • Cannabinoid Receptor Agonists
  • Cannabinoids