A novel approach for engineering efficient nanofluids by radiolysis

Sci Rep. 2022 Jun 24;12(1):10767. doi: 10.1038/s41598-022-14540-z.

Abstract

This contribution reports for the first time the possibility of using radiolysis to engineer stable efficient nanofluids which exhibit an enhanced thermal conductivity. The validation was confirmed on Ag-H2O and Ag-C2H6O2 nanofluids fabricated via g-radiolysis within the mild dose range of 0.95 × 103-2.45 × 103 Gray. The enhanced thermal conductivity of Ag-H2O and Ag-C2H6O2 nanofluids, was found to be g-radiations dose dependent. In the latter case of Ag-C2H6O2 nanofluid, the relative enhancement in the temperature range of 25-50 °C was found to be 8.89%, 11.54%, 18.69%, 23.57% and 18.45% for D1 = 0.95 × 103 Gray, D2 = 1.2 × 103 Gray, D3 = 1.54 × 103 Gray, D4 = 1.80 × 103 Gray and D5 = 2.45 × 103 Gray respectively. Yet not optimized, an enhancement of the effective thermal conductivity as much as 23.57% relatively to pure C2H6O2 was observed in stable Ag-C2H6O2 nanofluids. Equivalent results were obtained with Ag-H2O.