Reaction of [TiCp*Cl3 ] (Cp*=η5 -C5 Me5 ) with one equivalent of magnesium in tetrahydrofuran at room temperature affords the paramagnetic trinuclear complex [{TiCp*(μ-Cl)}3 (μ3 -Cl)], which reacts with dinitrogen under ambient conditions to give the diamagnetic derivative [{TiCp*(μ-Cl)}3 (μ3 -η1 : η2 : η2 -N2 )] and the titanium(III) dimer [{TiCp*Cl(μ-Cl)}2 ]. The structure of the trinuclear mixed-valence complexes has been studied by experimental and theoretical methods and the latter compound represents the first well-defined example of the μ3 -η1 : η2 : η2 coordination mode of the dinitrogen molecule. The reaction of [{TiCp*(μ-Cl)}3 (μ3 -η1 : η2 : η2 -N2 )] with excess HCl in tetrahydrofuran results in clean NH4 Cl formation with regeneration of the starting material [TiCp*Cl3 ]. Therefore, a cyclic ammonia synthesis under ambient conditions can be envisioned by alternating N2 /HCl atmospheres in a [TiCp*Cl3 ]/Mg(excess) reaction mixture in tetrahydrofuran.
Keywords: Cluster Compounds; Density Functional Calculations; Nitrogen Fixation; Reduction; Titanium.
© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.