Prevalence, Antibiotic-Resistance, and Replicon-Typing of Salmonella Strains among Serovars Mainly Isolated from Food Chain in Marche Region, Italy

Antibiotics (Basel). 2022 May 28;11(6):725. doi: 10.3390/antibiotics11060725.

Abstract

Nontyphoidal salmonellosis (NTS) is the second most commonly reported gastrointestinal infection in humans and an important cause of food-borne outbreaks in Europe. The use of antimicrobial agents for animals, plants, and food production contributes to the development of antibiotic-resistant Salmonella strains that are transmissible to humans through food. The aim of this study was to investigate the presence and the potential dissemination of multidrug-resistant (MDR) Salmonella strains isolated in the Marche Region (Central Italy) via the food chain. Strains were isolated from different sources: food, human, food animal/livestock, and the food-processing environment. Among them, we selected MDR strains to perform their further characterization in terms of resistance to tetracycline agent, carriage of tet genes, and plasmid profiles. Tetracycline resistance genes were detected by PCR and plasmid replicons by PCR-based replicon typing (PBRT). A total of 102 MDR Salmonella strains were selected among the most prevalent serovars: S. Infantis (n = 36/102), S. Derby (n = 20/102), S. Typhimurium (n = 18/102), and a monophasic variant of S. Typhimurium (MVST, n = 28/102). Resistance to sulfisoxazole (86%) and tetracycline (81%) were the most common, followed by ampicillin (76%). FIIS was the most predominant replicon (17%), followed by FII (11%) and FIB (11%) belonging to the IncF incompatibility group. Concerning the characterization of tet genes, tetB was the most frequently detected (27/89), followed by tetA (10/89), tetG (5/89), and tetM (1/89). This study showed the potential risk associated with the MDR Salmonella strains circulating along the food chain. Hence, epidemiological surveillance supported by molecular typing could be a very useful tool to prevent transmission of resistant Salmonella from food to humans, in line with the One Health approach.

Keywords: PCR-based replicon typing (PBRT); Salmonella serovars; antibiotic resistance; antimicrobial resistance genes (ARGs); extensively drug-resistant (XDR); food chain; multidrug-resistant (MDR); plasmid profile; tet genes.