In recent years, cannabis and hemp-based products have become increasingly popular for recreational use, edibles, beverages, health care products, and medicines. The rapid detection and differentiation of phytocannabinoids is, therefore, essential to assess the potency and the therapeutic and nutritional values of cannabis cultivars. Here, we implemented SpiderMass technology for in vivo detection of cannabidiolic acid (CBDA) and ∆9-tetrahydrocannabinolicacid (∆9-THCA), and other endogenous organic plant compounds, to access distribution gradients within the plants and differentiate between cultivars. The SpiderMass system is composed of an IR-laser handheld microsampling probe connected to a mass spectrometer through a transfer tube. The analysis was performed on different plant organs from freshly cultivated cannabis plants in only a few seconds. SpiderMass analysis easily discriminated the two acid phytocannabinoid isomers via MS/MS, and the built statistical models differentiated between four cannabis cultivars. Different abundancies of the two acid phytocannabinoids were found along the plant as well as between different cultivars. Overall, these results introduce direct analysis by SpiderMass as a compelling analytical alternative for rapid hemp analysis.
Keywords: SpiderMass; cannabinoids; in vivo; mass spectrometry; plants; water-assisted laser desorption/ionization.