Stream bacterial diversity peaks at intermediate freshwater salinity and varies by salt type

Sci Total Environ. 2022 Sep 20:840:156690. doi: 10.1016/j.scitotenv.2022.156690. Epub 2022 Jun 14.

Abstract

Anthropogenic freshwater salinization is an emerging and widespread water quality stressor that increases salt concentrations of freshwater, where specific upland land-uses produce distinct ionic profiles. In-situ studies find salinization in disturbed landscapes is correlated with declines in stream bacterial diversity, but cannot isolate the effects of salinization from multiple co-occurring stressors. By manipulating salt concentration and type in controlled microcosm studies, we identified direct and complex effects of freshwater salinization on bacterial diversity in the absence of other stressors common in field studies using chloride salts. Changes in both salt concentration and cation produced distinct bacterial communities. Bacterial richness, or the total number of amplicon sequence variants (ASVs) detected, increased at conductivities as low as 350 μS cm-1, which is opposite the observations from field studies. Richness remained elevated at conductivities as high as 1500 μS cm-1 in communities exposed to a mixture of Ca, Mg, and K chloride salts, but decreased in communities exposed to NaCl, revealing a classic subsidy-stress response. Exposure to different chloride salts at the same conductivity resulted in distinct bacterial community structure, further supporting that salt type modulates responses of bacterial communities to freshwater salinization. Community variability peaked at 125-350 μS cm-1 and was more similar at lower and upper conductivities suggesting possible shifts in deterministic vs. stochastic assembly mechanisms across freshwater salinity gradients. Based on these results, we hypothesize that modest freshwater salinization (125-350 μS cm-1) lessens hypo-osmotic stress, reducing the importance of salinity as an environmental filter at intermediate freshwater ranges but effects of higher salinities at the upper freshwater range differ based on salt type. Our results also support previous findings that ~300 μS cm-1 is a biological effect concentration and effective salt management strategies may need to consider variable effects of different salt types associated with land-use.

Keywords: 16 s amplicon sequencing; Base cations; Freshwater ecology; Freshwater salinization; Microbial ecology.

MeSH terms

  • Bacteria
  • Chlorides / chemistry
  • Fresh Water / chemistry
  • Rivers* / chemistry
  • Salinity*
  • Salts
  • Sodium Chloride

Substances

  • Chlorides
  • Salts
  • Sodium Chloride