Joint Optimization of k-t Sampling Pattern and Reconstruction of DCE MRI for Pharmacokinetic Parameter Estimation

IEEE Trans Med Imaging. 2022 Nov;41(11):3320-3331. doi: 10.1109/TMI.2022.3184261. Epub 2022 Oct 27.

Abstract

This work proposes to develop and evaluate a deep learning framework that jointly optimizes k-t sampling patterns and reconstruction for head and neck dynamic contrast-enhanced (DCE) MRI aiming to reduce bias and uncertainty of pharmacokinetic (PK) parameter estimation. 2D Cartesian phase encoding k-space subsampling patterns for a 3D spoiled gradient recalled echo (SPGR) sequence along a time course of DCE MRI were jointly optimized in a deep learning-based dynamic MRI reconstruction network by a loss function concerning both reconstruction image quality and PK parameter estimation accuracy. During training, temporal k-space data sharing scheme was optimized as well. The proposed method was trained and tested by multi-coil complex digital reference objects of DCE images (mcDROs). The PK parameters estimated by the proposed method were compared with two published iterative DCE MRI reconstruction schemes using normalized root mean squared errors (NRMSEs) and Bland-Altman analysis at temporal resolutions of [Formula: see text] = 2s, 3s, 4s, and 5s, which correspond to undersampling rates of R = 50, 34, 25, and 20. The proposed method achieved low PK parameter NRMSEs at all four temporal resolutions compared with the benchmark methods on testing mcDROs. The Bland-Altman plots demonstrated that the proposed method reduced PK parameter estimation bias and uncertainty in tumor regions at temporal resolution of 2s. The proposed method also showed robustness to contrast arrival timing variations across patients. This work provides a potential way to increase PK parameter estimation accuracy and precision, and thus facilitate the clinical translation of DCE MRI.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Contrast Media* / pharmacokinetics
  • Humans
  • Magnetic Resonance Imaging* / methods

Substances

  • Contrast Media