X-linked agammaglobulinaemia (XLA) is a primary immunodeficiency (PID) resulting from a defect in the B cell development. It has conventionally been thought that T cells play a major role in the development and function of the B cell compartment. However, it has also been shown that B cells and T cells undergo bidirectional interactions and B cells also influence the structure and function of the T cell compartment. Patients with XLA offer a unique opportunity to understand the effect of absent B cells on the T cell compartment. In this review, we provide an update on abnormalities in the T cell compartment in patients with XLA. Studies have shown impaired memory T cells, follicular helper T cells, T regulatory cells and T helper 17 in patients with XLA. In addition, these patients have also been reported to have abnormal delayed cell-mediated immune responses and vaccine-specific T cell-mediated immune responses; defective T helper cell polarization and impaired T cell receptor diversity. At present, the clinical significance of these T cell abnormalities has not been studied in detail. However, these abnormalities may result in an increased risk of viral infections, autoimmunity, autoinflammation and possibly chronic lung disease. Abnormal response to SARS-Cov2 vaccine in patients with XLA and prolonged persistence of SARS-Cov2 virus in the respiratory tract of these patients may be related to abnormalities in the T cell compartment.
Keywords: Bruton tyrosine kinase (BTK); Primary Immunodeficiency (PID); Severe acute respiratory syndrome coronavirus 2 (SARS-Cov2); T cell receptor (TCR); T follicular helper cells (TFH); X-linked agammaglobulinaemia (XLA).
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.