The electrochemical nitrate reduction reaction (NO3RR) not only holds great potential for the removal of NO3- contaminants from the environment, but also potentially provides a renewable-energy-driven NH3 synthesis method to replace the Haber-Bosch process. Herein, we report that Fe-doped SnS2 nanosheets enriched with S-vacancies can be used as an efficient NO3RR catalyst, showing a high NH3 yield of 7.2 mg h-1 cm-2 (at -0.8 V) and a faradaic efficiency of 85.6% (at -0.7 V). Density functional theory (DFT) calculations revealed that S-vacancies on Fe-SnS2 serve as the main active sites for the NO3RR and the Fe-doping can further regulate the electronic structure of S-vacancies to optimize the binding energies of NO3RR intermediates, resulting in reduced energy barriers and enhanced NO3RR activity.