Chemical, immunological and biological properties of peptides like vasoactive-intestinal-peptide and peptide-histidine-isoleucinamide extracted from the venom of two lizards (Heloderma horridum and Heloderma suspectum)

Eur J Biochem. 1987 Apr 15;164(2):321-7. doi: 10.1111/j.1432-1033.1987.tb11061.x.

Abstract

Having previously isolated helodermin, the major peptide like vasoactive-intestinal-peptide and peptide-histidine-isoleucinamide, from the venom of the lizard Heloderma suspectum, we decided on a systematic exploration of all (VIP-PHI)-like peptides present in the venom of another lizard of the Helodermatidae family: Heloderma horridum. Six (VIP-PHI)-like peptides (PHH1 to 6) were purified to homogeneity from the venom of the lizard H. horridum with PHH3 and PHH4 representing two minor forms. All peptides cross-reacted in radioimmunoassays for helodermin and PHI but not for VIP. They yielded four fragments (T1 to T4) after trypsin digestion. T1, T2 and T3 showed the same retention time by reverse-phase HPLC and the same amino acid composition; the differences were confined to T4, the C-terminal sequence. PHH5 and PHH6 were found to be identical to synthetic helospectins I and II respectively. PHH1 and PHH3 probably resulted from a secondary modification of PHH5, while PHH2 and PHH4 derived from PHH6. Thus, the VIP-like peptides, previously called helospectins, are in fact typical of H. horridum venom. We confirmed that helodermin is the major (VIP-PHI)-like peptide of the venom of H. suspectum and observed its absence in H. horridum venom. Also, we found that positions 8 and 9 of helodermin are occupied by two Glu residues instead of two Gln as previously published. Helospectin-like material was also present in H. suspectum venom but in very small amount. In both venoms all VIP-like peptides were equally potent and efficient when tested for (a) their ability to occupy VIP as well as secretin receptors in rat pancreatic membranes and VIP receptors in rat liver membranes, and (b) the ensuing activation of adenylate cyclase in both membrane preparations.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenylyl Cyclases / metabolism
  • Animals
  • Enzyme Activation / drug effects
  • Immunochemistry
  • In Vitro Techniques
  • Intercellular Signaling Peptides and Proteins
  • Lizards
  • Peptide Fragments / isolation & purification
  • Peptide PHI / isolation & purification
  • Peptides / immunology
  • Peptides / isolation & purification*
  • Peptides / pharmacology
  • Species Specificity
  • Vasoactive Intestinal Peptide / isolation & purification
  • Venoms / analysis*

Substances

  • Intercellular Signaling Peptides and Proteins
  • Peptide Fragments
  • Peptide PHI
  • Peptides
  • Venoms
  • Vasoactive Intestinal Peptide
  • heliodermin
  • Adenylyl Cyclases