Regarding the existence of similar helices on the structure of different proteins, recently, novel variants of Chondroitinase ABC I (cABC I) have been constructed, where a representative helix between two structural motifs in Chondroitinase ABC I from Proteus vulgaris has been replaced by similar versions of helices found in other proteins. The previous study has revealed that the structural features and the activity of double mutants M886A/G887E (inspired by the 30 S ribosomal protein S1 from Geminocystis herdmanii) and M889I/Q891K (inspired by the chondroitin lyase from Proteus mirabilis) is comparable with that of wild-type (WT) cABC I. Here, the kinetic parameters of the enzyme activity for the WT and double mutants were determined. Of the recombinant double mutants, M889I/Q891K gave the highest catalytic efficiency with the kcat/Km value of approximately 2.3-fold increase, as compared with the WT and M886A/G887E. Modeling of experimental data showed that the mechanism of the heat-induced structural alteration, and the enzyme-substrate complex formation, changed upon mutation. These natural versions of the connecting helix can be used as an efficient linker in protein engineering studies as well as those investigations involving the use of biological linkers.
Keywords: Catalytic efficiency; Chondroitinase ABC I; Enzyme activity; Helix, linker; Protein engineering.
Copyright © 2022 Elsevier Inc. All rights reserved.