Development of imaging probes for identification of tumors in the early stages of growth can significantly reduce the tumor-related health hazards and improve our capacity for treatment of cancer. In this work, three different furan and imidazole fluorescent derivatives abbreviated as Cyclo X, SAC and SNO are introduced for in vivo and in vitro imaging of cancer cells. The fluorescence quantum yield values were 0.226, 0.400 and 0.479 for Cyclo X, SAC and SNO, respectively. The excitation and emission wavelengths of maximum intensity were (360, 452), (350, 428) and (350, 432) nm for Cyclo X, SAC and SNO, respectively. The MTT reduction assay was used to estimate the cytotoxic activity of the proposed derivatives against HT-29 (cancer) and Vero (normal) cell lines. Cyclo X showed no cytotoxic effect, while SAC and SNO showed significantly higher cytotoxicity against the tested cell lines than cisplatin as a well-known anticancer drug. In vitro fluorescence microscopic images obtained using HT-29 cells showed that Cyclo X produced very bright images. The in vivo cancer cell imaging using 4T1 tumor-bearing mice revealed that Cyclo X is selectively accumulated in the tumor without distribution in the mice body organs. The spectral and structural stability, large Stokes shift, non-cytotoxicity and high level of selectivity for in vivo imaging are properties that make Cyclo X a suitable candidate to be used for long-term monitoring of cancer cells.
Keywords: Cancer cell; Fluorescence imaging; Furan derivatives; Imidazole derivatives; In vitro imaging; In vivo imaging; Tumor.
Copyright © 2022 Elsevier B.V. All rights reserved.