Background: Posttraumatic stress disorder (PTSD) is associated with autonomic dysfunction as indicated by deficits in the sympathetic and parasympathetic nervous systems. These abnormalities are expressed as elevated heart rate and reduced heart rate variability (HRV), respectively. Intermittent theta-burst stimulation (iTBS), a form of transcranial magnetic stimulation, has demonstrated effectiveness in PTSD. Nevertheless, it remains unclear whether HRV may be an iTBS biomarker for PTSD and whether iTBS impacts autonomic activity.
Materials and methods: Fifty veterans with PTSD participated in a randomized controlled trial, receiving ten daily sessions of sham-controlled iTBS (right dorsolateral prefrontal cortex, 1800 pulses/day, 80% active motor threshold, 9.5 min). With a usable dataset (N = 47), HRV parameters were assessed as predictors of clinical response immediately after stimulation. iTBS effects on autonomic response (mean RR interval, root mean square of successive differences [RMSSD], total power [TP], and low-frequency/high-frequency [LF/HF] ratio) were evaluated using an ultra-short approach.
Results: TP and RMSSD were significant predictors of acute clinical response to iTBS. Individuals with higher TP had better response to iTBS with improved symptoms on the Clinician-Administered PTSD Scale (rs = -0.58, p = 0.004), and higher functionality on the Social and Occupational Function Scale (rs = 0.43, p = 0.04). Similarly, higher RMSSD was associated with superior outcomes (rs = -0.44, p = 0.04). No other significant changes in HRV metrics were observed (p ≥ 0.05).
Conclusions: Our findings indicate that autonomic activity is a potential low-cost and technically simple predictive biomarker of iTBS response in PTSD. Less autonomic dysfunction was associated with superior clinical improvements with iTBS. Future studies might consider HRV acquisition during iTBS, as well as prospective testing of these findings in patients with elevated hyperarousal.
Keywords: Autonomic nervous system; biomarker; heart rate variability; posttraumatic stress disorder; theta-burst stimulation.
Published by Elsevier Inc.