Development of a 3D Individualized Mask for Neonatal Non-Invasive Ventilation

Int J Bioprint. 2022 Feb 24;8(2):516. doi: 10.18063/ijb.v8i2.516. eCollection 2022.

Abstract

Non-invasive masks are designed based on generic facial models; therefore, difficulties in fitting patients' unique characteristics are common. A poor fit of the mask may have consequences such as air leaks or pressure ulcers. It is possible to optimize the fit of interfaces by adapting them to a patient's face. Our objective is to design an individualized silicone mask for non-invasive ventilation for a premature phantom using a three-dimensional (3D) scanner and bioprinter. The facial surface of the manikin was scanned with a 3D scanner in a supine position, in an incubator with a sliding mattress and in <2 min. We printed the tailor-made mask in 3 h with biocompatible and hypoallergenic silicone. When applied under a simulated clinical scenario, the mask possessed good structural reliability after post-processing and optimal mechanical features. We observed adequate thoracic excursion and 14% reduction in air leaks when the manikin was ventilated with the customized mask with a neonatal ventilator. We ink the edges of personalized and standard masks. After fitting them to phantoms, personalized mask showed better pressure distribution. Our subsequent research direction is to test the viability of personalizing non-invasive ventilation masks for very preterm infants of our department.

Keywords: 3D printing; Mask; Non-invasive ventilation; Premature infant; Pressure ulcer.