The rationally-designed lignocellulose valorization that promotes a novel "waste-treats-pollutant" standpoint is highly desired yet still challenging for the spread of biomass industry. At this point, a cascade technique with the assistance of deep eutectic solvent (DES) fractionation is tailored to dually valorize wheat straw into fluorescent lignin carbon dots (LCDs) and bimetallic Mg-Fe oxide-decorated biochar (MBC) via solvothermal engineering and co-precipitation/pyrolysis respectively. Benefitting from the abundance of β-aryl ether and hydroxyl groups in DES-extracted lignin, the photoluminescence LCDs emit blue color in a wide excitation span, which can be adopted to selectively detect ferric ions (Fe3+) in a broad dosage scale with a highly linear correlation of 10-50 μM. Taking advantages of the MBC-aided persulfate activation, we propose the efficient arbidol removal system with a universal concentration of 20-200 ppm in the scalable pH ranging from 3 to 11. The dominate migration pathways involving with active oxygen species and surface electron transfer are comprehensively studied via electron paramagnetic resonance, radical-quenching experiments, and theoretical arithmetic. With the endeavor of biorefineries, this full-scale platform ignites the dazzling wildfire from dual lignocellulose valorization that will also seek its accurate position in the kingdoms of functional materials and wastewater restoration.
Keywords: Lignin carbon dots; Lignocellulose valorization; Persulfate activation; Waste-treats-pollutant; Wastewater remediation.
Copyright © 2022 Elsevier B.V. All rights reserved.