Microplastics (MPs) are an emerging environmental pollutant, threatening marine and terrestrial ecosystems. Because of their properties and their widely varying size (5mm-0.1 μm), it is still difficult to define a valid and efficient method for extracting MPs from solid matrices. Among the several methods proposed, density separation is the most practical and cost-effective one. Progress is still ongoing towards a deeper understanding of the advantages and limitations related to the application of density separation for MPs extraction, the recovery yields and the factors that may influence it. In this context, we introduce the following work, which provides an early-stage insight into how the sediment texture may influence the efficiency of this extraction method, and how parameters, such as sedimentation time and extraction cycles, can be modified to always achieve the best recovery. Our focus has been directed on evaluating the extraction efficiency of HDPE MPs by density separation using NaCl, from three types of sediment: sandy (SS), sandy loam (SLS) and sandy-clay loam (SCLS). We investigated the impact of sedimentation time (1, 6, 12, 24 h) and extraction cycles (3 cycles for each sedimentation time) on MPs recovery. Finally, we determined the minimum amount of MPs (MPs g/g sediment) below which it is not possible to quantify MPs with the method used. The results have shown that the recovery efficiency of MPs from sediment is structure dependent. The highest recoveries are reached after a settling time of 1 and 6 h. Furthermore, for samples with minimum clay content (SS), only one extraction cycle is needed, whereas two extraction cycles are required for SLS and SCLS. The outcomes about the detection limit (LOD) of the method, showed the existence of an interaction MPs-clay/sediment, which allowed us to understand how far this extraction method is suitable in field, thus defining the minimum grade of MPs pollution (MPs g/g sediment) below which this method is no longer capable to extract MPs from contaminated samples.
Keywords: Density separation; HDPE; Microplastics; Recovery; Sediment texture.
Copyright © 2022 Elsevier Ltd. All rights reserved.