Islet cell replacement and transplantation immunology in a mouse strain with inducible diabetes

Sci Rep. 2022 May 31;12(1):9033. doi: 10.1038/s41598-022-13087-3.

Abstract

Improved models of experimental diabetes are needed to develop cell therapies for diabetes. Here, we introduce the B6 RIP-DTR mouse, a model of experimental diabetes in fully immunocompetent animals. These inbred mice harbor the H2b major histocompatibility complex (MHC), selectively express high affinity human diphtheria toxin receptor (DTR) in islet β-cells, and are homozygous for the Ptprca (CD45.1) allele rather than wild-type Ptprcb (CD45.2). 100% of B6 RIP-DTR mice rapidly became diabetic after a single dose of diphtheria toxin, and this was reversed indefinitely after transplantation with islets from congenic C57BL/6 mice. By contrast, MHC-mismatched islets were rapidly rejected, and this allotransplant response was readily monitored via blood glucose and graft histology. In peripheral blood of B6 RIP-DTR with mixed hematopoietic chimerism, CD45.2 BALB/c donor blood immune cells were readily distinguished from host CD45.1 cells by flow cytometry. Reliable diabetes induction and other properties in B6 RIP-DTR mice provide an important new tool to advance transplant-based studies of islet replacement and immunomodulation to treat diabetes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Diabetes Mellitus, Experimental* / therapy
  • Islets of Langerhans Transplantation*
  • Islets of Langerhans*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Transplantation Immunology