Accurate estimation of risk with both imaging and biochemical parameters in intermediate risk pulmonary embolism (PE) remains challenging. The aim of the study was to evaluate echocardiographic parameters that reflect right and left heart hemodynamic as predictors of adverse events in intermediate risk PE. This was a retrospective observational study on patients with computed tomography pulmonary angiography diagnosis of PE admitted at Cardiology department of the Clinical Emergency Hospital of Oradea, Romania between January 2018—December 2021. Echocardiographic parameters obtained at admission were studied as predictors of in hospital adverse events. The following adverse outcomes were registered: death, resuscitated cardiac arrest, hemodynamic deterioration and need of rescue thrombolysis. An adverse outcome was present in 50 patients (12.62%). PE related death was registered in 17 patients (4.3%), resuscitated cardiac arrest occurred in 6 patients (1.51%). Another 20 patients (5.05%) required escalation of therapy with thrombolysis and 7 (1.76%) patients developed haemodynamic instability. Echocardiographic independent predictors for in hospital adverse outcome were RV/LV ≥ 1 (HR = 3.599, 95% CI 1.378−9.400, p = 0.009) and VTI ≤ 15 mm (HR = 11.711, 95% CI 4.336−31.633, p < 0.001). The receiver operator curve renders an area under curve for LVOT VTI ≤ 15 mm of 0.792 (95% CI 0.719−0.864, p < 0.001) and for a RV/LV ≥ 1 of 0.746 (95% CI 0.671−0.821, p < 0.001). A combined criterion (LVOT VTI ≤ 15 and RV/LV ≥ 1) showed a positive predictive value of 75% and a negative predictive value of 95% regarding in hospital adverse outcomes. Low LVOT VTI and increased RV/LV are useful for identifying normotensive patients with PE at risk for short term adverse outcomes. Combining an LVOT VTI ≤ 15 cm with a RV/LV ≥ 1 can identify with increased accuracy PE patients with impending risk of clinical deterioration.
Keywords: intermediate risk; left ventricular outflow tract; pulmonary embolism; right ventricle dysfunction; velocity time integral.