While determining the response of soil microbes to grazer exclosure duration is critical to understanding ecosystem restoration processes, few studies have focused on this issue. With seasonal grazing as a control, microbes of alpine grassland soils under 5, 13, 22, and 39 years of grazer exclosure situated in the eastern part of the Qinghai-Tibetan Plateau, were examined. Microbial diversity was determined through Illumina high-throughput sequencing of the 16S rRNA gene and an internal transcription spacer (ITS). We found that soil bacterial α-diversity showed insignificant differences between seasonal grazing and grazer exclosure and among the grazer exclosures of different durations, while fungal α-diversity under the 5-year grazer exclosure was significantly different from those under the other treatments. Soil microbial community profiles under the 13-, 22-, and 39-year grazer exclosures were significantly different compared to those under the seasonal grazing or 5-year grazer exclosure. Briefly, longer exclosure durations led to a higher relative abundance of multiple copiotrophic microbial lineages (e.g., β-Proteobacteria, Rhizobiales, and Frankiales), whereas several oligotrophic microbial lineages (e.g., Chloroflexi, Leotiomycetes, and Xylariales) gradually and significantly decreased. Functional predictions suggest that as grazer exclosure duration was extended, the relative abundance of nitrogen fixers increased, while the proportions of plant pathogenic fungi decreased. This indicates that long-term grazer exclosure duration may contribute to enhanced soil nitrogen fixation and grassland health by maintaining plant growth and decreasing the risk of plant disease. However, this may have a resource cost as plant productivity and soil organic carbon both decreased with the extension of grazer exclosure duration. Therefore, the agroecology effect of grazer exclosure duration on the diversity and abundance of soil nitrogen fixing bacteria and plant pathogen fungi, should be given more attention in the cold and humid portion of the Qinghai-Tibetan Plateau.
Keywords: Alpine grasslands; Grassland degradation; Plant pathogen fungi; Soil microbes; Soil nitrogen fixing bacteria.
Copyright © 2022 Elsevier B.V. All rights reserved.