Chemistry of polyhalogenated nitrobutadienes, 17: Efficient synthesis of persubstituted chloroquinolinyl-1 H-pyrazoles and evaluation of their antimalarial, anti-SARS-CoV-2, antibacterial, and cytotoxic activities

Beilstein J Org Chem. 2022 May 9:18:524-532. doi: 10.3762/bjoc.18.54. eCollection 2022.

Abstract

A series of 26 novel 1-(7-chloroquinolin-4-yl)-4-nitro-1H-pyrazoles bearing a dichloromethyl and an amino or thio moiety at C3 and C5 has been prepared in yields up to 72% from the reaction of 1,1-bisazolyl-, 1-azolyl-1-amino-, and 1-thioperchloro-2-nitrobuta-1,3-dienes with 7-chloro-4-hydrazinylquinoline. A new way for the formation of a pyrazole cycle from 3-methyl-2-(2,3,3-trichloro-1-nitroallylidene)oxazolidine (6) is also described. In addition, the antimalarial activity of the synthesized compounds has been evaluated in vitro against the protozoan malaria parasite Plasmodium falciparum. Notably, the 7-chloro-4-(5-(dichloromethyl)-4-nitro-3-(1H-1,2,4-triazol-1-yl)-1H-pyrazol-1-yl)quinoline (3b) and 7-chloro-4-(3-((4-chlorophenyl)thio)-5-(dichloromethyl)-4-nitro-1H-pyrazol-1-yl)quinoline (9e) inhibited the growth of the chloroquine-sensitive Plasmodium falciparum strain 3D7 with EC50 values of 0.2 ± 0.1 µM (85 ng/mL, 200 nM) and 0.2 ± 0.04 µM (100 ng/mL, 200 nM), respectively. Two compounds (3b and 10d) have also been tested for anti-SARS-CoV-2, antibacterial, and cytotoxic activity.

Keywords: 1H-pyrazoles; 2-nitroperchlorobutadiene; anti-SARS-CoV-2 activity; antimalarial activity; chloroquine; nucleophilic vinylic substitution.

Grants and funding

This work was financially supported by Clausthal University of Technology (D.E.K, V.A.Z) and by the LOEWE Center DRUID (Project B3) within the Hessian Excellence Program (I.B., M.D.).