Deep forecasting of translational impact in medical research

Patterns (N Y). 2022 Apr 8;3(5):100483. doi: 10.1016/j.patter.2022.100483. eCollection 2022 May 13.

Abstract

The value of biomedical research-a $1.7 trillion annual investment-is ultimately determined by its downstream, real-world impact, whose predictability from simple citation metrics remains unquantified. Here we sought to determine the comparative predictability of future real-world translation-as indexed by inclusion in patents, guidelines, or policy documents-from complex models of title/abstract-level content versus citations and metadata alone. We quantify predictive performance out of sample, ahead of time, across major domains, using the entire corpus of biomedical research captured by Microsoft Academic Graph from 1990-2019, encompassing 43.3 million papers. We show that citations are only moderately predictive of translational impact. In contrast, high-dimensional models of titles, abstracts, and metadata exhibit high fidelity (area under the receiver operating curve [AUROC] > 0.9), generalize across time and domain, and transfer to recognizing papers of Nobel laureates. We argue that content-based impact models are superior to conventional, citation-based measures and sustain a stronger evidence-based claim to the objective measurement of translational potential.

Keywords: deep learning; natural language processing; representation learning; research impact; translational research.