Fusion of Whole Night Features and Desaturation Segments Combined with Feature Extraction for Event-Level Screening of Sleep-Disordered Breathing

Nat Sci Sleep. 2022 May 17:14:927-940. doi: 10.2147/NSS.S355369. eCollection 2022.

Abstract

Purpose: Misdiagnosis and missed diagnosis of sleep-disordered breathing (SDB) is common because polysomnography (PSG) is time-consuming, expensive, and uncomfortable. The use of recording methods based on the oxygen saturation (SpO2) signals detected by wearable devices is impractical and inaccurate for extracting signal features and detecting apnoeic events. We propose a method to automatically detect the apnoea-based SpO2 signal segments and compute the apnoea-hypopnea index (AHI) for SDB screening and grading.

Patients and methods: First, apnoea-related desaturation segments in raw SpO2 signals were detected; global features were extracted from whole night signals. Then, the SpO2 signal segments and global features were fed into a bi-directional long short-term memory convolutional neural network model to identify apnoea-related and non-apnoea-related events. The apnoea-related segments were used to assess the AHI.

Results: The model was trained on 500 individuals and tested on 8131 individuals from two public hospitals and one private centre. In the testing data, the classification accuracy for apnoea-related segments was 84.3%. Individuals with SDB (AHI 15) were identified with a mean accuracy of 88.95%.

Conclusion: Using automatic SDB detection based on SpO2 signals can accurately screen for SDB.

Keywords: AHI; Bi-LSTM-CNN; SDB severity classification; desaturation events; sleep apnea hypopnea syndrome.

Grants and funding

The study received grants from the Shanghai Municipal Commission of Science and Technology (Grant No. 18DZ2260200), Shanghai Shen-Kang Hospital Management Center Project (Grant Nos. SHDC2020CR2044B, SHDC2020CR3056B), Shanghai Jiao Tong University Affiliated Sixth People’s Hospital College-level Project (X-2296).