Ex silico engineering of cystine-dense peptides yielding a potent bispecific T cell engager

Sci Transl Med. 2022 May 18;14(645):eabn0402. doi: 10.1126/scitranslmed.abn0402. Epub 2022 May 18.

Abstract

Cystine-dense peptides (CDPs) are a miniprotein class that can drug difficult targets with high affinity and low immunogenicity. Tools for their design, however, are not as developed as those for small-molecule and antibody drugs. CDPs have diverse taxonomic origins, but structural characterization is lacking. Here, we adapted Iterative Threading ASSEmbly Refinement (I-TASSER) and Rosetta protein modeling software for structural prediction of 4298 CDP scaffolds and performed in silico prescreening for CDP binders to targets of interest. Mammalian display screening of a library of docking-enriched, methionine and tyrosine scanned (DEMYS) CDPs against PD-L1 yielded binders from four distinct CDP scaffolds. One was affinity-matured, and cocrystallography yielded a high-affinity (KD = 202 pM) PD-L1-binding CDP that competes with PD-1 for PD-L1 binding. Its subsequent incorporation into a CD3-binding bispecific T cell engager produced a molecule with pM-range in vitro T cell killing potency and which substantially extends survival in two different xenograft tumor-bearing mouse models. Both in vitro and in vivo, the CDP-incorporating bispecific molecule outperformed a comparator antibody-based molecule. This CDP modeling and DEMYS technique can accelerate CDP therapeutic development.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Bispecific* / pharmacology
  • Antibodies, Bispecific* / therapeutic use
  • B7-H1 Antigen
  • CD3 Complex
  • Cystine
  • Disease Models, Animal
  • Humans
  • Mammals
  • Mice
  • Peptides
  • T-Lymphocytes*

Substances

  • Antibodies, Bispecific
  • B7-H1 Antigen
  • CD3 Complex
  • Cystine
  • Peptides