Terbium-Doped and Dual-Passivated γ-CsPb(I1- x Brx )3 Inorganic Perovskite Solar Cells with Improved Air Thermal Stability and High Efficiency

Adv Mater. 2022 Jul;34(29):e2203204. doi: 10.1002/adma.202203204. Epub 2022 Jun 9.

Abstract

Realizing photoactive and thermodynamically stable all-inorganic perovskite solar cells (PSCs) remains a challenging task within halide perovskite photovoltaic (PV) research. Here, a dual strategy for realizing efficient inorganic mixed halide perovskite PV devices based on a terbium-doped solar absorber, that is, CsPb1- x Tbx I2 Br, is reported, which undertakes a bulk and surface passivation treatment in the form of CsPb1- x Tbx I2 Br quantum dots, to maintain a photoactive γ-phase under ambient conditions and with significantly improved operational stability. Devices fabricated from these air-processed perovskite thin films exhibit an air-stable power conversion efficiency (PCE) that reaches 17.51% (small-area devices) with negligible hysteresis and maintains >90% of the initial efficiency when operating for 600 h under harsh environmental conditions, stemming from the combined effects of the dual-protection strategy. This approach is further examined within large-area PSC modules (19.8 cm2 active area) to realize 10.94% PCE and >30 days ambient stability, as well as within low-bandgap γ-CsPb0.95 Tb0.05 I2.5 Br0.5 (Eg = 1.73 eV) materials, yielding 19.01% (18.43% certified) PCE.

Keywords: all-inorganic perovskites; dual passivation; high efficiency devices; perovskite solar cell modules; phase stability.