Simultaneous Tuning of Alkyl Chains and End Groups in Non-fused Ring Electron Acceptors for Efficient and Stable Organic Solar Cells

ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24374-24385. doi: 10.1021/acsami.2c03723. Epub 2022 May 17.

Abstract

Fine-tuning the alkyl chains and end groups of non-fused ring electron acceptors (NFREAs) plays vital roles in the promotion of charge transfer (CT) and power conversion efficiency (PCE). In this work, we developed a series of A-D-A'-D-A-type NFREAs, which possess the same terminals (A), the cyclopentadithiophene unit (D), and the thieno[3,4-c]pyrrole-4,6-dione (A'). Despite the subtle difference in side chains and halogenated end groups, the six acceptors exhibit a considerable difference in the efficiency and device stability of the organic solar cells (OSCs). Among the molecules, chlorinated NFREAs show a broader light absorption than the fluorinated ones do. Compared with C8C8-4F (1-octylnonyl and fluorination) and C6C4-4Cl (2-butyloctyl and chlorination), C8C8-4Cl (1-octylnonyl and chlorination) exhibits a lower highest occupied molecular orbital level, higher electron mobility, and denser molecular packing. The OSCs based on PM6:C8C8-4Cl yield the best PCE of 14.11%, which is attributed to the faster charge transport, high miscibility, and preferable morphology. Moreover, the PM6:C8C8-4Cl devices retain 91.1% of the initial PCE after being placed in air with 67% relative humidity for 50 days. This work shows that the simultaneous optimization of side chains and end groups facilitates the CT and improves the stability in the OSCs, offering a novel view into the molecular design of A-D-A'-D-A-type NFREAs.

Keywords: alkyl chains and end groups; charge transfer; molecular packing; non-fused ring acceptors; organic solar cell; stability.