Environmentally friendly quantum dots (QDs) of InP-based materials are widely investigated, but their reliability remains inadequate to realize their full potential and wide application. In this study, InP/ZnSeS/ZnS QDs (pristine QDs) were dispersed and embedded into Santa Barbara Amorphous-15 mesoporous particles (SBA-15 MPs) for the first time. A solvent-free method for preparing QD white light-emitting diodes (WLEDs) that is compatible with the WLED packaging process was developed. The photoluminescence (PL) spectrum of pristine QD powder exhibited cluster states and had huge redshift of approximately 23 nm. By comparison, the PL spectrum of the SBA-15 MP/QD hybrid powder had a slight redshift of approximately 8 nm, only because the pristine QDs were dispersed and embedded well in the SBA-15 MPs. The PL intensity of the SBA-15 MP/QD hybrid powder slightly decreased after heating and cooling compared with that of the pristine QDs. Moreover, the luminous efficacy of the SBA-15 MP/QD hybrid WLEDs was enhanced by approximately 14% compared with that of the pristine QD-WLEDs. Furthermore, reliability analysis revealed that the SBA-15 MPs could improve the stability of the pristine QDs on chips. Thus, these MPs promise good potential for applications in mini-LEDs in the future.
Keywords: SBA-15; indium phosphide; mesoporous particle; quantum dots; thermal stability.