Placental insufficiency (PI) lowers fetal oxygen and glucose concentrations, which disrupts glucose-insulin homeostasis and promotes fetal growth restriction (FGR). To date, prenatal treatments for FGR have not attempted to correct the oxygen and glucose supply simultaneously. Therefore, we investigated whether a 5-day correction of oxygen and glucose concentrations in PI-FGR fetuses would normalize insulin secretion and glucose metabolism. Experiments were performed in near-term FGR fetal sheep with maternal hyperthermia-induced PI. Fetal arterial oxygen tension was increased to normal levels by increasing the maternal inspired oxygen fraction and glucose was infused into FGR fetuses (FGR-OG). FGR-OG fetuses were compared with maternal air insufflated, saline-infused fetuses (FGR-AS) and control fetuses. Prior to treatment, FGR fetuses were hypoxemic and hypoglycemic and had reduced glucose-stimulated insulin secretion (GSIS). During treatment, oxygen, glucose, and insulin concentrations increased, and norepinephrine concentrations decreased in FGR-OG fetuses, whereas FGR-AS fetuses were unaffected. On treatment day 4, glucose fluxes were measured with euglycemic and hyperinsulinemic-euglycemic clamps. During both clamps, rates of glucose utilization and production were greater in FGR-AS than FGR-OG fetuses, while glucose fluxes in FGR-OG fetuses were not different than control rates. After 5 days of treatment, GSIS increased in FGR-OG fetuses to control levels and their ex vivo islet GSIS was greater than FGR-AS islets. Despite normalization in fetal characteristics, GSIS, and glucose fluxes, FGR-OG and FGR-AS fetuses weighed less than controls. These findings show that sustained, simultaneous correction of oxygen and glucose normalized GSIS and whole-body glucose fluxes in PI-FGR fetuses after the onset of FGR.
Keywords: fetal therapy; glucose homeostasis; intrauterine intervention; islets of Langerhans; placental insufficiency.
© The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.