Achieving magnetic bistability with large thermal hysteresis is still a formidable challenge in material science. Here we synthesize a series of isostructural chain complexes using 9,10-anthracene dicarboxylic acid as a photoactive component. The electron transfer photochromic Mn2+ and Zn2+ compounds with photogenerated diradicals are confirmed by structures, optical spectra, magnetic analyses, and density functional theory calculations. For the Mn2+ analog, light irradiation changes the spin topology from a single Mn2+ ion to a radical-Mn2+ single chain, further inducing magnetic bistability with a remarkably wide thermal hysteresis of 177 K. Structural analysis of light irradiated crystals at 300 and 50 K reveals that the rotation of the anthracene rings changes the Mn1-O2-C8 angle and coordination geometries of the Mn2+ center, resulting in magnetic bistability with this wide thermal hysteresis. This work provides a strategy for constructing molecular magnets with large thermal hysteresis via electron transfer photochromism.
© 2022. The Author(s).