Sixty palmatine (PMT) derivatives were synthesized and evaluated for antiplatelet aggregation taking berberine as the lead, and the structure-activity relationship was first systematically described. Among them, compound 2v showed the best potency in reducing adenosine diphosphate (ADP)-induced platelet aggregation in a dose-dependent manner. It greatly suppressed ADP-induced platelet aggregation, activation, and Akt phosphorylation in vitro and ex vivo after oral administration to mice. It also effectively inhibited carrageenan-induced thrombus formation in the mouse tail and lung, as well as reduced the serum P-selectin level. Compound 2v might simultaneously bind to protein kinase G to improve vasodilator-stimulated phosphoprotein phosphorylation and bind to phosphatidylinositol 3-kinase to inhibit Akt phosphorylation, which synergically reduced platelet aggregation, thereby achieving antithrombotic efficacy. Therefore, PMT derivatives constituted a novel family of antiplatelet aggregation agents with the advantage of a good safety profile, worthy of further investigation.