Chiral hybrid metal halides with a high dissymmetry factor (glum ) and a superior photoluminescence quantum yield (PLQY) are promising candidates for circularly polarized luminescence (CPL) light sources. Here, we report eight new chiral hybrid manganese halides, crystallizing in the non-centrosymmetric space group P21 21 21 and showing intense CPL emissions. Oppositely-signed circular dichroism (CD) and CPL signals are detected according to the R- and S-configurations of the chiral alkanolammonium cations. Time-resolved PL spectra show long averaged decay lifetimes up to 1 ms for (R-3-quinuclidinol)MnBr3 (R-1). The glum of polycrystalline samples for coordinated structures (23×10-3 ) is more than doubled compared with the non-coordinated ones (8.5×10-3 ), due to the structural variations. R-1 exhibit both a high glum and a high PLQY (50.2 %). The effective chirality transfer mechanism through coordination bonds, with strongly emissive MnII centers, enables a new class of high-performance CPL materials.
Keywords: Chirality; Circularly Polarized Luminescence; Coordination Modes; Dissymmetry Factor; Halides.
© 2022 Wiley-VCH GmbH.