Due to the low stoichiometry and highly transient nature of protein phosphorylation it is challenging to capture the dynamics and complexity of phosphorylation events on a systems level. Here, we present an optimized protocol to measure virus-induced phosphorylation events with high sensitivity using label free quantification-based phosphoproteomics. Specifically, we describe filter assisted protein digestion (FASP), enrichment of phosphopeptides, mass spectrometry, and subsequent bioinformatic analysis. For complete details on the use and execution of this protocol, please refer to Hunziker et al. (2022).
Keywords: Cell Biology; Mass Spectrometry; Microbiology; Protein Biochemistry; Proteomics; Signal Transduction; Systems biology.
© 2022 The Authors.