A core-shell structure electrocatalyst for trace nitrobenzene reduction was prepared with Mn(ii)[5,10,15,20-tetra(4-aminophenyl)porphyrin] (MnTAPP) and graphene oxide (GO) as raw materials. Firstly, MnTAPP and GO were combined together by covalent bonds, and then the supported MnTAPP was coupled together through p-dibromobenzene, a conjugated bridging agent, to obtain a more stable graphene-oxide@polymerized-manganese-porphyrin composite (GMPP@AMP). The structure and morphology of the GMPP@AMP were characterized by FT-IR, Raman spectroscopy, SEM and TEM. The GMPP@AMP modified glassy carbon electrode (GMPP@AMP/GCE) was prepared and the electrochemical activity of GMPP@AMP towards nitrobenzene reduction was evaluated by cyclic voltammetry (CV). The results showed that GMPP@AMP/GCE had a more positive reduction potential than MnTAPP/GCE and GO/GCE, and the reduction current responded more sensitively. Electrocatalytic reduction currents of nitrobenzene were found to be linearly related to concentration over the range 0.04 to 0.24 mM using a differential pulse voltammogram (DPV) method. Nitrobenzene is easily compatible with polymerized MnTAPP which has rich nitrogen-containing functional groups and porous structure, and the highly conductive GO combined with the polymerized MnTAPP having excellent electron transfer ability. This produced a significant synergistic catalytic effect during the electrocatalytic reaction of trace nitrobenzene. The novel composite has good application prospects in electrochemical detection of trace nitrobenzene compounds in the environment.
This journal is © The Royal Society of Chemistry.