MoS2 nanosheets were grown on TiO2 nanotubes by the simple hydrothermal method for the first time. The layer-by-layer growth of MoS2 nanosheets led to a significant increase in the specific surface area of TiO2/MoS2 burst tube composites compared with TiO2 burst tubes, a significantly enhanced ability to separate photo-induced carriers, and synergistic adsorption and visible light catalytic activity of dye molecules. The maximum adsorption (q max) of MB was 72.46 mg g-1. In addition, 94.1% of MB could be degraded after 30 minutes of visible light irradiation. The microsurface morphology, structure, chemical composition, element valence and band width of TiO2/MoS2 nanocomposites were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS) and photoluminescence spectroscopy (PL). The mechanism of photocatalytic reaction was studied via free radical capture experiments.
This journal is © The Royal Society of Chemistry.