Harnessing of phytomicrobiome for developing potential biostimulant consortium for enhancing the productivity of chickpea and soil health under sustainable agriculture

Sci Total Environ. 2022 Aug 25:836:155550. doi: 10.1016/j.scitotenv.2022.155550. Epub 2022 May 1.

Abstract

The main aim of the present work was to explore culturable bacteria and to develop potential microbial consortium as bio-inoculants for enhancing plant productivity, nutritional content, and soil health. For this study, we selected two bacterial strains e.g., Enterobacter hormaechei (BHUJPCS-15) and Brevundimonas naejangsanensis (BHUJPVCRS-1) based on plant growth-promoting activities We developed a consortium of both strains and estimated plant growth promotion (PGP) activity which recorded significant better production of Indole-3-acetic acid (IAA) (61.53 μg/ml), siderophore (12.66%), ammonia (98.66 μg/ml), phosphate solubilisation (942.64 μg/ml), potassium solubilisation, and antagonistic activity against Fusarium sp. than individual bacterial strains. Bacterial consortium (E. hormaechei + B. naejangsanensis) treatment significantly enhanced plant growth attributes, grain yields, nutritional content in plant and seed, followed by E. hormaechei as compared to control. Seed treated with consortium recorded a significant increase in available N P K, enzymes and microbial communities in soils. Microbiome analysis revealed that the dominance of bacterial group and its functional properties is directly correlated with plant growth attributes, nutrient content, soil N P K, and enzyme activity. The relative abundance of bacterial phyla Proteobacteria (98%) was dominantly recorded in all treatments. The microbiome of seed and soil, treated with consortium (E. hormaechei + B. naejangsanensis) showed high amount of diversity of bacterial phyla Verrucomicrobia, Firmicutes, Bacteroidetes, Acidobacteria, Chloroflexi, and Proteobacteria than E. hormaechei (Firmicutes, Bacteroidetes, Chloroflexi and Proteobacteria) and control (Firmicutes, Bacteroidetes and Proteobacteria). In soil, root and shoot, E. hormaechei treatment enriched ligninolytic, nitrogen fixation, cellulolytic, nitrate ammonification among other pathways. The main finding is that the consortium treated seed of chickpea recorded significant enhancement of plant growth attributes, productivity, nutritional content, and soil health as well as microbial colonization in soil and seed part.

Keywords: Biostimulant consortium; Brevundimonas naejangsanensis; Chickpea; Endophytes; Enterobacter hormaechei; Microbiome; Plant growth-promoting activity; Productivity.

MeSH terms

  • Agriculture
  • Cicer* / microbiology
  • Fusarium*
  • Plant Development
  • Plants
  • Soil
  • Soil Microbiology

Substances

  • Soil