Chitosan-derived N-doped carbon catalysts with a metallic core for the oxidative dehydrogenation of NH-NH bonds

RSC Adv. 2020 Jan 2;10(1):474-481. doi: 10.1039/c9ra08146a. eCollection 2019 Dec 20.

Abstract

Sustainable metal-encased (Ni-Co/Fe/Cu)@N-doped-C catalysts were prepared from bio-waste and used for the oxidative dehydrogenation reaction. A unique combination of bimetals, in situ N doping, and porous carbon surfaces resulted in the formation of the effective "three-in-one" catalysts. These N-doped graphene-like carbon shells with bimetals were synthesized via the complexation of metal salts with chitosan and the subsequent pyrolysis at 700 °C. A well-developed thin-layer structure with large lateral dimensions could be obtained by using Ni-Fe as the precursor. Importantly, the Ni-Fe@N-doped-C catalyst was found to be superior for the dehydrogenation of hydrazobenzene under additive/oxidant-free conditions compared to the conventional and other synthesized catalysts. Characterizations by TEM and XPS accompanied by BET analysis revealed that the enhanced catalytic properties of the catalysts arose from their bimetals and could be attributed to the graphitic shell structure and graphitic N species, respectively.