Ripple-selective GABAergic projection cells in the hippocampus

Neuron. 2022 Jun 15;110(12):1959-1977.e9. doi: 10.1016/j.neuron.2022.04.002. Epub 2022 Apr 29.

Abstract

Ripples are brief high-frequency electrographic events with important roles in episodic memory. However, the in vivo circuit mechanisms coordinating ripple-related activity among local and distant neuronal ensembles are not well understood. Here, we define key characteristics of a long-distance projecting GABAergic cell group in the mouse hippocampus that selectively exhibits high-frequency firing during ripples while staying largely silent during theta-associated states when most other GABAergic cells are active. The high ripple-associated firing commenced before ripple onset and reached its maximum before ripple peak, with the signature theta-OFF, ripple-ON firing pattern being preserved across awake and sleep states. Controlled by septal GABAergic, cholinergic, and CA3 glutamatergic inputs, these ripple-selective cells innervate parvalbumin and cholecystokinin-expressing local interneurons while also targeting a variety of extra-hippocampal regions. These results demonstrate the existence of a hippocampal GABAergic circuit element that is uniquely positioned to coordinate ripple-related neuronal dynamics across neuronal assemblies.

Keywords: GABA; brain state; disinhibition; hippocampus; inhibition; medial septum; muscarinic; sharp-wave ripple; sleep.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Hippocampus* / physiology
  • Interneurons* / physiology
  • Mice
  • Neurons / physiology
  • Parvalbumins
  • Wakefulness

Substances

  • Parvalbumins